Section 4.1 – The Division Algorithm¶
Properties of $\mathbb Z$ vs $\mathbb R$¶
Let $a,b \in \mathbb R$.
Closure ($\mathbb R$ and $\mathbb Z$)¶
- $a + b \in \mathbb R$
- $a \cdot b \in \mathbb R$
Commutivity ($\mathbb R$ and $\mathbb Z$)¶
- $a + b = b + a$
- $a \cdot b = b \cdot a$
Associativity ($\mathbb R$ and $\mathbb Z$)¶
- $(a + b) + c = a + (b + c)$
- $(ab)c = a(bc)$
Identity ($\mathbb R$ and $\mathbb Z$)¶
- $\exists 0 \in \mathbb R$ such that, $\forall a \in \mathbb R, 0+a = a$
- $\exists 1 \in \mathbb R$ such that, $\forall a \in \mathbb R, 1 \cdot a = a$
Distribution ($\mathbb R$ and $\mathbb Z$)¶
- $a \cdot (b + c) = a \cdot b + a \cdot c$
Inverses ($\mathbb R$ and some $\mathbb Z$)¶
($\mathbb Z$) For any $a \in \mathbb R, \exists -a \in \mathbb R$, such that,
(not $\mathbb Z$) For any $a \in \mathbb R, \exists \frac{1}{a} \in \mathbb R$, such that,
Example
$\mathbb Z ^\text{o} =$ the set of odd integers.
Is $\mathbb Z ^\text{o}$ closed under addition and multiplication?
Solution
IT is not closed under addition since $5 + 3 = 8$.
Closed under multiplication. Proof:
Let $a,b \in \mathbb Z ^\text{o}$, so,
where $m,n \in \mathbb Z$. So,
Since $2mn + m + n \in \mathbb Z$, $a \cdot b \in \mathbb Z^\text{o}$.
Subtraction and Division¶
We define subtraction and division using inverses.
- $a - b = a + (-b)$
- $\frac{a}{b} = a \cdot \frac{1}{b}$
Theorem: The Well-Ordering Principal¶
Any set of natural numbers ($\mathbb N$) has a smallest element*.
*Does note hold for $\mathbb Z$ or $\mathbb R$.
The Division Algorithm¶
Example
Divide $278$ by $13$
Solution
Can't do long division :(.
Theorem¶
For integers $a$ and $b$, both not zero, there exist unique integers $q$ and $r$ such that,
where $0 \lt r \lt |b|$. We call,
Symbol | Name |
---|---|
$a$ | Dividend |
$b$ | Divisor |
$q$ | Quotient |
$r$ | Remainder |
Proposition¶
Let $a,b \in \mathbb Z$ where $b \neq 0$. If $a = bq + r$, with $0 \lt r \lt |b|$, then,
Number in Other Bases¶
Example
Consider in base 10,
Now consider in base 8,
definition: The base $b$ representation of a natural (base 10) number $n$ is written,
where $0 \le d_i \lt b$ and
Theorem¶
If $b \gt 1$, then every integer $n$ has a unique base $b$ representation.
Proof in G. MacGillivray notes (NT pg. 4)
Example
Convert $(613)_{10}$ to binary, octal and hexadecimal.
Solution
Binary (Method 1)¶
Binary (Method 2)¶
Octal¶
So,
Hexadecimal¶
So,
Example
Convert $1222$ to hexadecimal.
Solution
Use your calculator,