Section 4.1 – The Division Algorithm

Properties of $\mathbb Z$ vs $\mathbb R$

Let $a,b \in \mathbb R$.

Closure ($\mathbb R$ and $\mathbb Z$)

  • $a + b \in \mathbb R$
  • $a \cdot b \in \mathbb R$

Commutivity ($\mathbb R$ and $\mathbb Z$)

  • $a + b = b + a$
  • $a \cdot b = b \cdot a$

Associativity ($\mathbb R$ and $\mathbb Z$)

  • $(a + b) + c = a + (b + c)$
  • $(ab)c = a(bc)$

Identity ($\mathbb R$ and $\mathbb Z$)

  • $\exists 0 \in \mathbb R$ such that, $\forall a \in \mathbb R, 0+a = a$
  • $\exists 1 \in \mathbb R$ such that, $\forall a \in \mathbb R, 1 \cdot a = a$

Distribution ($\mathbb R$ and $\mathbb Z$)

  • $a \cdot (b + c) = a \cdot b + a \cdot c$

Inverses ($\mathbb R$ and some $\mathbb Z$)

($\mathbb Z$) For any $a \in \mathbb R, \exists -a \in \mathbb R$, such that,

(not $\mathbb Z$) For any $a \in \mathbb R, \exists \frac{1}{a} \in \mathbb R$, such that,

Example

$\mathbb Z ^\text{o} =$ the set of odd integers.

Is $\mathbb Z ^\text{o}$ closed under addition and multiplication?

Solution

IT is not closed under addition since $5 + 3 = 8$.

Closed under multiplication. Proof:

Let $a,b \in \mathbb Z ^\text{o}$, so,

where $m,n \in \mathbb Z$. So,

Since $2mn + m + n \in \mathbb Z$, $a \cdot b \in \mathbb Z^\text{o}$.

Subtraction and Division

We define subtraction and division using inverses.

  • $a - b = a + (-b)$
  • $\frac{a}{b} = a \cdot \frac{1}{b}$

Theorem: The Well-Ordering Principal

Any set of natural numbers ($\mathbb N$) has a smallest element*.

*Does note hold for $\mathbb Z$ or $\mathbb R$.

The Division Algorithm

Example

Divide $278$ by $13$

Solution

Can't do long division :(.

Theorem

For integers $a$ and $b$, both not zero, there exist unique integers $q$ and $r$ such that,

where $0 \lt r \lt |b|$. We call,

Symbol Name
$a$ Dividend
$b$ Divisor
$q$ Quotient
$r$ Remainder

Proposition

Let $a,b \in \mathbb Z$ where $b \neq 0$. If $a = bq + r$, with $0 \lt r \lt |b|$, then,

Number in Other Bases

Example

Consider in base 10,

Now consider in base 8,

definition: The base $b$ representation of a natural (base 10) number $n$ is written,

where $0 \le d_i \lt b$ and

Theorem

If $b \gt 1$, then every integer $n$ has a unique base $b$ representation.

Proof in G. MacGillivray notes (NT pg. 4)

Example

Convert $(613)_{10}$ to binary, octal and hexadecimal.

Solution

Binary (Method 1)

Binary (Method 2)

Octal

So,

Hexadecimal

So,

Example

Convert $1222$ to hexadecimal.

Solution

Use your calculator,