Section 2.2 – Set Operations

Union

definition: Let $A$ and $B$ be sets. The union of $A$ and $B$ (denoted $A \cup B$) is the set,

Intersection

defninition: The intersection of $A$ and $B$ (denoted $A \cap B$) is the set,

Example

Let $W = { a,b,c,d,e }$ and $V = { a,b,c,x,y,z }$.

Solution

Example

  • $A = { a, b, c }$
  • $B = {x,y,z}$
  • $C = {a,b,x,z}$
  • $\mathcal{U} = { a,b,x,y,z }$

Solution

Set Difference

Symmetric Difference

Universe

All the objects that can occur in the set.

Compliment

Theorem

For sets $A$ and $B$,

Proof

1) Show $(A \cup B)^C \subseteq A^C \cap A^C$

Let $x \in (A \cup B)^C$, so $x \not\in A$ and $x \not\in B$.

Thus $x$ is in $A^C$ and $B^C$.

2) Show $A^C \cap B^C \subseteq (A \cup B)^C$

$x \in A^C \cap B^C$, so $x \in A^C$ and $x \in B^C$.

Then $x \not\in A$ and $x \not\in B$.

Thus $(A \cup B)^C = A^C \cap B^C$.

Cartesian Product

definition: The cartesian product of $A$ and $B$ is,

Note:

In ordered pairs,

Example

Solution

Fact

For any set $A$,

Proposition

Proof

Let $(x,y) \in A \times (B \cup C)$, then $x \in a$ and $y \in B \cup C$.

Case 1:

If $y \in B$, then,

Case 2:

If $y \in C$, then,

In either case $(x,y) \in (A \times B) \cup (A \times C)

Example

Solution

Venn Diagrams

Can help us see that,

but it doesn't prove it.

Example

Show by counter example that,

Solution

  • $A \to 2,3,5,6$
  • $B \to 3,4,5,7$
  • $C \to 5,6,7,8$