Section 2.2 – Set Operations¶
Union¶
definition: Let $A$ and $B$ be sets. The union of $A$ and $B$ (denoted $A \cup B$) is the set,
Intersection¶
defninition: The intersection of $A$ and $B$ (denoted $A \cap B$) is the set,
Example
Let $W = { a,b,c,d,e }$ and $V = { a,b,c,x,y,z }$.
Solution
Example
- $A = { a, b, c }$
- $B = {x,y,z}$
- $C = {a,b,x,z}$
- $\mathcal{U} = { a,b,x,y,z }$
Solution
Set Difference¶
Symmetric Difference¶
Universe¶
All the objects that can occur in the set.
Compliment¶
Theorem¶
For sets $A$ and $B$,
Proof¶
1) Show $(A \cup B)^C \subseteq A^C \cap A^C$
Let $x \in (A \cup B)^C$, so $x \not\in A$ and $x \not\in B$.
Thus $x$ is in $A^C$ and $B^C$.
2) Show $A^C \cap B^C \subseteq (A \cup B)^C$
$x \in A^C \cap B^C$, so $x \in A^C$ and $x \in B^C$.
Then $x \not\in A$ and $x \not\in B$.
Thus $(A \cup B)^C = A^C \cap B^C$.
Cartesian Product¶
definition: The cartesian product of $A$ and $B$ is,
Note:¶
In ordered pairs,
Example
Solution
Fact¶
For any set $A$,
Proposition¶
Proof¶
Let $(x,y) \in A \times (B \cup C)$, then $x \in a$ and $y \in B \cup C$.
Case 1:¶
If $y \in B$, then,
Case 2:¶
If $y \in C$, then,
In either case $(x,y) \in (A \times B) \cup (A \times C)
Example
Solution
Venn Diagrams¶
Can help us see that,
but it doesn't prove it.
Example
Show by counter example that,
Solution
- $A \to 2,3,5,6$
- $B \to 3,4,5,7$
- $C \to 5,6,7,8$