Lecture 2 - Notes

January 6, 2016

Signal Representation

A sinusoid using 6 data points.

$k$ $\omega_k$ $A_k$ $\phi_k$
1 1 0.2388 0.1897
2 2 ... ...
3 $2\sqrt{3}$ ... ...
4 8 ... ...
5 10 ... ...
6 12 ... ...

Complex Numbers

Let $z_0$ be a complex number with polar coordinates $(r_0,\Theta_0)$ and cartesian coordinates $(x_0,y_0)$. Then,

If we plot $r_0 = 2$ and $\Theta_0 = \frac{\pi}{4}$,

Periodic Properties of Discreet Time Signals

We can represent a discreet signal as,

and we know that,

Because the signals are periodic we choose an interval length of $2\pi$, and either $[ -\pi, \pi)$ or $[0,2\pi)$

Condition for Periodicity

A signal $x[n]$ is periodic with period $N$ if,

for all $m \in \mathbb{R}$.

Example

Determine the fundamental period of,

Solution

$N$ will be $\text{lcm}{(N_1,N_2,N_3)}$ where,

So for $N_1$, since $x[n] = x[n + N_1]$ and $\omega_0 n = \omega_0 n + 2k\pi$

For $N_2$,

and so on.