Lecture 2 - Notes
January 6, 2016
Signal Representation
A sinusoid using 6 data points.
$k$ | $\omega_k$ | $A_k$ | $\phi_k$ |
---|---|---|---|
1 | 1 | 0.2388 | 0.1897 |
2 | 2 | ... | ... |
3 | $2\sqrt{3}$ | ... | ... |
4 | 8 | ... | ... |
5 | 10 | ... | ... |
6 | 12 | ... | ... |
Complex Numbers
Let $z_0$ be a complex number with polar coordinates $(r_0,\Theta_0)$ and cartesian coordinates $(x_0,y_0)$. Then,
If we plot $r_0 = 2$ and $\Theta_0 = \frac{\pi}{4}$,
Periodic Properties of Discreet Time Signals
We can represent a discreet signal as,
and we know that,
Because the signals are periodic we choose an interval length of $2\pi$, and either $[ -\pi, \pi)$ or $[0,2\pi)$
Condition for Periodicity
A signal $x[n]$ is periodic with period $N$ if,
for all $m \in \mathbb{R}$.
Example
Determine the fundamental period of,
Solution
$N$ will be $\text{lcm}{(N_1,N_2,N_3)}$ where,
So for $N_1$, since $x[n] = x[n + N_1]$ and $\omega_0 n = \omega_0 n + 2k\pi$
For $N_2$,
and so on.